Stemolecule™ 低分子化合物

製品分類 : 低分子化合物・サイトカイン

Stemgent ブランド

Stemgentブランドの低分子化合物は世界的に広く使用されています。

品番 製品名 製品詳細 容量 希望小売価格
(税抜)
04-0079

★NEW!

WH-4-023
Lckキナーゼ および Srcキナーゼの阻害剤 2 mg ¥19,800
04-0080

★NEW!

SB590885
B-RAF の阻害剤 2 mg ¥9,800
04-0081

★NEW!

IM-12
GSK-3β の阻害剤 2 mg ¥9,800
04-0004 CHIR99021 GSK-3β(Glycogen Synthase Kinase 3β)の阻害剤 2 mg ¥24,500
04-0004-10 10 mg ¥107,000
04-0004-02 CHIR99021
(10mM溶液)
2 mg ¥28,500
04-0074 LDN-193189 BMP Type I レセプター(ALK2、ALK3)の膜透過性の阻害剤 2 mg ¥25,000
04-0074-10 10 mg ¥107,000
04-0074-02 LDN-193189
(10mM溶液)
2 mg ¥29,000
04-0006 PD0325901 MAPK阻害剤 2 mg ¥24,000
04-0006-10 10 mg ¥107,000
04-0006-02 PD0325901
(10mM溶液)
2 mg ¥28,500
04-0034 Wnt Inhibitor IWP-2 Wnt/β-カテニン経路のアンタゴニスト 2 mg ¥12,500
04-0035 Wnt Inhibitor IWP-3 Wnt/β-カテニン経路のアンタゴニスト 2 mg ¥12,500
04-0036 Wnt Inhibitor IWP-4 Wnt/β-カテニン経路のアンタゴニスト 2 mg ¥12,500
04-0046 XAV939 Wnt/β-カテニン経路の膜透過性の阻害剤 2 mg ¥30,000
04-0052 A769662 AMP-activated protein kinase(AMPK)を活性化する膜透過性の低分子化合物 10 mg ¥27,500
04-0014 A83-01 TGF-β1 アクチビン受容体様キナーゼ(ALK)のALK-4、-5、-7 の選択的阻害剤 2 mg ¥14,000
04-0014-10 10 mg ¥55,000
04-0015 ALK5 Inhibitor TGF-β1 アクチビン受容体様キナーゼ(ALK)ALK-5 の選択的阻害剤 1 mg ¥12,500
04-0021 All-Trans Retinoic Acid 分化・増殖などを制御する発生経路のシグナル伝達分子 100 mg ¥11,000
SRP002 ec23®
(レチノイン酸代替物)
非常に安定なレチノイン酸(ATRA)の代替物としてご使用できます。 5 mg ¥6,500
SRP002-2 5 mg×2 ¥10,000
04-0077 AM580 レチノイン酸受容体αのアゴニスト 5 mg ¥14,000
04-0051 BI-D1870 リボソームS6 キナーゼ(RSK1、RSK2、RSK3 およびRSK4)の阻害剤 10 mg ¥66,000
04-0003 BIO(6-bromoindirubin-3′-oxime) Wnt シグナル伝達経路におけるGSK-3a/β の阻害剤 2 mg ¥12,500
04-0002 BIX01294 G9a ヒストンメチルトランスフェラーゼ(G9a HMTase)阻害剤 5 mg ¥12,500
04-0078 CD437 レチノイン酸レセプターγ特異的なレチノイドアゴニスト 5 mg ¥16,500
04-0022 Cyclopamine ヘッジホッグシグナル伝達経路特異的な阻害剤 2 mg ¥20,000
04-0041 DAPT γ-セクレターゼの阻害剤 5 mg ¥17,500
04-0024 Dorsomorphin AMP-activated protein kinase (AMPK)、bone morphogenic protein(BMP)シグナルの阻害剤 2 mg ¥13,500
04-0016 Doxycycline hyclate (Dox) テトラサイクリン系の広域抗生物質 10 mg ¥6,000
04-0025 Forskolin アデニリルシクラーゼを活性化物質 10 mg ¥18,800
04-0047 GDC-0941 Class I PI3 Kinase1の選択的な透過性の阻害剤 5 mg ¥22,500
04-0049 GSK429286A Rho-associated, coiled-coil containing protein kinase(ROCK)の膜透過性の選択的な阻害剤 2 mg ¥31,000
04-0026 IDE-1 胚体内胚葉誘導因子 2 mg ¥30,000
04-0027 IDE-2 胚体内胚葉誘導因子 2 mg ¥30,000
04-0037 IPA-3 p21-activated kinase (Pak)活性化の阻害剤 5 mg ¥12,500
04-0028 KAAD-Cyclopamine ヘッジホッグシグナル伝達経路特異的な阻害剤 100 μg ¥31,000
04-0054 LY411575 γセクレターゼの選択的な透過性の阻害剤 5 mg ¥30,000
04-0008 PD173074 FGF レセプターの阻害剤 2 mg ¥15,000
04-0039 Pifithrin-μ p53のミトコンドリア結合阻害剤 5 mg ¥10,000
04-0009 Purmorphamine Smoothened のアゴニスト 5 mg ¥12,500
04-0072 Pyrintegrin ヒトES細胞の生存率を上げる細胞膜透過性の低分子化合物 1 mg ¥32,500
04-0013 R(+)Bay K 8644 L 型カルシウムチャネル活性化因子 5 mg ¥19,000
04-0001 RG108 DNAメチルトランスフェラーゼ特異的な膜透過性の阻害剤 10 mg ¥16,000
04-0030 ROCK II Inhibitor ROCK II型の特異的な阻害剤 2 mg ¥30,000
04-0010 SB431542 TGF-β1 アクチビン受容体様キナーゼ(ALK)のALK-4、-5、-7 の選択的阻害剤 5 mg ¥12,000
04-0010-10 10 mg ¥20,000
04-0010-05 SB431542
(10 mM 溶液)
5 mg ¥12,000
04-0010-05 SC1 (Pluripotin) 細胞外シグナル制御キナーゼ1(ERK1)およびRas GTPase 活性化タンパク質(Ras-GAP)の阻害剤 1 mg ¥12,500
04-0032 SHH Antagonist ソニックヘッジホッグシグナル伝達経路の阻害剤(JK184) 2 mg ¥30,000
04-0031 SMO Antagonist SMO (Smoothened) のアンタゴニスト 2 mg ¥30,000
04-0005 Sodium Butyrate Histone deacetyl transferases (HDACs)の阻害剤 500 mg ¥6,000
04-0017 Thiazovivin ROCKの選択的な膜透過性の阻害剤 1 mg ¥31,000
04-0007 Valproic Acid Histone deacetyl transferases (HDACs)の膜透過性の阻害剤 5 g ¥6,000

論文・発表

  • Zimmer B, Piao J, Ramnarine K, Tomishima MJ, Tabar V, Studer L. Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells. Stem Cell Reports. 2016 Jun 14;6(6):858-72. doi: 10.1016/j.stemcr.2016.05.005. PubMed PMID: 27304916.
  • Rigamonti A, Repetti GG, Sun C, Price FD, Reny DC, Rapino F, Weisinger K, Benkler C, Peterson QP, Davidow LS, Hansson EM, Rubin LL. Large-Scale Production of Mature Neurons from Human Pluripotent Stem Cells in a Three-Dimensional Suspension Culture System. Stem Cell Reports. 2016 Jun 14;6(6):993-1008. doi:10.1016/j.stemcr.2016.05.010. PubMed PMID: 27304920.
  • Nishimura K, Doi D, Samata B, Murayama S, Tahara T, Onoe H, Takahashi J. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1. Stem Cell Reports. 2016 Mar 16. pii: S2213-6711(16)00059-X. doi:10.1016/j.stemcr.2016.02.008. [Epub ahead of print] PubMed PMID: 26997644.
  • Shahbazi E, Moradi S, Nemati S, Satarian L, Basiri M, Gourabi H, Zare Mehrjardi N, Günther P, Lampert A, Händler K, Hatay FF, Schmidt D, Molcanyi M, Hescheler J, Schultze JL, Saric T, Baharvand H. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor. Stem Cell Reports. 2016 Mar 22. pii: S2213-6711(16)00064-3. doi: 10.1016/j.stemcr.2016.02.013. [Epub ahead of print] PubMed PMID: 27052315.
  • Nefzger CM, Jardé T, Rossello FJ, Horvay K, Knaupp AS, Powell DR, Chen J, Abud HE, Polo JM. A Versatile Strategy for Isolating a Highly Enriched Population of Intestinal Stem Cells. Stem Cell Reports. 2016 Feb 18. pii: S2213-6711(16)00031-X. doi: 10.1016/j.stemcr.2016.01.014. [Epub ahead of print] PubMed PMID: 26923822.
  • Bhutani K, Nazor KL, Williams R, Tran H, Dai H, D?akula , Cho EH, Pang AW, Rao M, Cao H, Schork NJ, Loring JF. Whole-genome mutational burden analysis of three pluripotency induction methods. Nat Commun. 2016 Feb 19;7:10536. doi:10.1038/ncomms10536. PubMed PMID: 26892726.
  • Fernandes HJ, Hartfield EM, Christian HC, Emmanoulidou E, Zheng Y, Booth H, Bogetofte H, Lang C, Ryan BJ, Sardi SP, Badger J, Vowles J, Evetts S, Tofaris GK, Vekrellis K, Talbot K, Hu MT, James W, Cowley SA, Wade-Martins R. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson’s iPSC-Derived Dopamine Neurons. Stem Cell Reports. 2016 Feb 17. pii:S2213-6711(16)00030-8. doi: 10.1016/j.stemcr.2016.01.013. [Epub ahead of print] PubMed PMID: 26905200.
  • Imaizumi K, et al. (2015) Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Reports.
  • Attari F, et al. (2014) Efficient induction of pluripotency in primordial germ cells by dual inhibition of TGF-β and ERK signaling pathways. Stem Cells Dev. 23(10):1050-61.
  • Li, W, et al. (2014) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells. 27:2992-3000.
  • Itokazu T, et al. (2014) Involvement of Wnt/β-catenin signaling in the development of neuropathic pain. Neurosci Res. 79:34-40.
  • Blaschke K, et al. (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 500(7461):222-6.
  • Sundberg M, et al. (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells. 31(8):1548-62.
  • Koehler KR, et al. (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 500(7461):217-21.
  • Uyama M, et al. (2013) Wasf2: A novel target of intermittent parathyroid hormone administration. Int J Mol Med. 31(5):1243-7.
  • Chesebro JE, et al. (2013) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open. 2(2):227-37.
  • Kinney MA, et al. (2013) Temporal modulation of β-catenin signaling by multicellular aggregation kinetics impacts embryonic stem cell cardiomyogenesis. Stem Cells Dev. 22(19):2665-77.
  • Rezania A. et al. (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 31(11):2432-42.
  • Chien Y, et al. (2012) Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials. 33(32):8003-16.
  • Farin HF, et al. (2012) Redundant Sources of Wnt Regulate Intestinal Stem Cells and Promote Formation of Paneth Cells. Gastroenterology. 143(6):1518-1529.e7.
  • Hudson J, et al. (2012) Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev. 21(9):1513-23.
  • Nagy K, et al. (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev. 7(3):693-702.
  • Wang B, et al. (2011) Reprogramming efficiency and quality of induced Pluripotent Stem Cells (iPSCs) generated from muscle-derived fibroblasts of mdx mice at different ages. PLoS Curr. 3:RRN1274.
  • Häärä O, et al. (2011) Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 138(13):2681-91.
  • Lin T, et al. (2009) A chemical platform for improved induction of human iPSCs. Nat Methods. 6(11):805-8.